Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
J Med Virol ; 95(4): e28688, 2023 04.
Article in English | MEDLINE | ID: covidwho-2256021

ABSTRACT

Viral metagenomics has been extensively applied for the identification of emerging or poorly characterized viruses. In this study, we applied metagenomics for the identification of viral infections among pediatric patients with acute respiratory disease, but who tested negative for SARS-CoV-2. Twelve pools composed of eight nasopharyngeal specimens were submitted to viral metagenomics. Surprisingly, in two of the pools, we identified reads belonging to the poorly characterized Malawi polyomavirus (MWPyV). Then, the samples composing the positive pools were individually tested using quantitative polymerase chain reaction for identification of the MWPyV index cases. MWPyV-positive samples were also submitted to respiratory virus panel testing due to the metagenomic identification of different clinically important viruses. Of note, MWPyV-positive samples tested also positive for respiratory syncytial virus types A and B. In this study, we retrieved two complete MWPyV genome sequences from the index samples that were submitted to phylogenetic inference to investigate their viral origin. Our study represents the first molecular and genomic characterization of MWPyV obtained from pediatric patients in South America. The detection of MWPyV in acutely infected infants suggests that this virus might participate (coparticipate) in cases of respiratory symptoms. Nevertheless, future studies based on testing of a larger number of clinical samples and MWPyV complete genomes appear to be necessary to elucidate if this emerging polyomavirus might be clinically important.


Subject(s)
COVID-19 , Polyomavirus Infections , Polyomavirus , Respiratory Tract Infections , Viruses , Infant , Child , Humans , Metagenomics , Brazil/epidemiology , Malawi/epidemiology , Phylogeny , SARS-CoV-2 , Polyomavirus Infections/epidemiology , Polyomavirus/genetics , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology
3.
PLoS Negl Trop Dis ; 15(7): e0009591, 2021 07.
Article in English | MEDLINE | ID: covidwho-1317139

ABSTRACT

Tracking the spread of SARS-CoV-2 variants of concern is crucial to inform public health efforts and control the ongoing pandemic. Here, we report genetic evidence for circulation of the P.1 variant in Northeast Brazil. We advocate for increased active surveillance to ensure adequate control of this variant throughout the country.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence/genetics , Biological Monitoring , Brazil/epidemiology , Genetic Variation/genetics , Genome, Viral/genetics , Humans , Public Health , SARS-CoV-2/isolation & purification , Travel
4.
Int J Infect Dis ; 103: 234-241, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-919645

ABSTRACT

OBJECTIVES: The Network for Genomic Surveillance in South Africa (NGS-SA) was formed to investigate the introduction and understand the early transmission dynamics of the SARS-CoV-2 epidemic in South-Africa. DESIGN: This paper presents the first results from this group, which is a molecular epidemiological study of the first 21 SARS-CoV-2 whole genomes sampled in the first port of entry - KwaZulu-Natal (KZN) - during the first month of the epidemic. By combining this with calculations of the effective reproduction number (R), it aimed to shed light on the patterns of infections in South Africa. RESULTS: Two of the largest provinces - Gauteng and KZN - had a slow growth rate for the number of detected cases, while the epidemic spread faster in the Western Cape and Eastern Cape. The estimates of transmission potential suggested a decrease towards R = 1 since the first cases and deaths, but a subsequent estimated R average of 1.39 between 6-18 May 2020. It was also demonstrated that early transmission in KZN was associated with multiple international introductions and dominated by lineages B1 and B. Evidence for locally acquired infections in a hospital in Durban within the first month of the epidemic was also provided. CONCLUSION: The COVID-19 pandemic in South Africa was very heterogeneous in its spatial dimension, with many distinct introductions of SARS-CoV2 in KZN and evidence of nosocomial transmission, which inflated early mortality in KZN. The epidemic at the local level was still developing and NGS-SA aimed to clarify the dynamics in South Africa and devise the most effective measures as the outbreak evolved.


Subject(s)
COVID-19/transmission , Phylogeny , SARS-CoV-2/genetics , Humans , South Africa/epidemiology
5.
F1000Res ; 9: 576, 2020.
Article in English | MEDLINE | ID: covidwho-721640

ABSTRACT

Background: There are no known medicines or vaccines to control the COVID-19 pandemic caused by SARS-CoV-2 (nCoV). Antiviral peptides are superior to conventional drugs and may also be effective against COVID-19. Hence, we investigated the SARS-CoV-2 Spike receptor-binding domain (nCoV-RBD) that interacts with hACE2 for viral attachment and entry. Methods: Three strategies and bioinformatics approaches were employed to design potential nCoV-RBD - hACE2 interaction-blocking peptides that may restrict viral attachment and entry. Firstly, the key residues interacting with nCoV-RBD - hACE2 are identified and hACE2 sequence-based peptides are designed. Second, peptides from five antibacterial peptide databases that block nCoV-RBD are identified; finally, a chimeric peptide design approach is used to design peptides that can bind to key nCoV-RBD residues. The final peptides are selected based on their physiochemical properties, numbers and positions of key residues binding, binding energy, and antiviral properties. Results: We found that: (i) three amino acid stretches in hACE2 interact with nCoV-RBD; (ii) effective peptides must bind to three key positions of nCoV-RBD (Gly485/Phe486/Asn487, Gln493, and Gln498/Thr500/Asn501); (iii) Phe486, Gln493, and Asn501 are critical residues; (iv) AC20 and AC23 derived from hACE2 may block two key critical positions; (iv) DBP6 identified from databases can block the three sites of the nCoV-RBD and interacts with one critical position, Gln498; (v) seven chimeric peptides were considered promising, among which cnCoVP-3, cnCoVP-4, and cnCoVP-7 are the top three; and (vi) cnCoVP-4 meets all the criteria and is the best peptide. Conclusions: To conclude, using three different bioinformatics approaches, we identified 17 peptides that can potentially bind to the nCoV-RBD that interacts with hACE2. Binding these peptides to nCoV-RBD may potentially inhibit the virus to access hACE2 and thereby may prevent the infection. Out of 17, 10 peptides have promising potential and need further experimental validation.


Subject(s)
Coronavirus Infections , Pandemics , Peptides/pharmacology , Peptidyl-Dipeptidase A/chemistry , Pneumonia, Viral , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Angiotensin-Converting Enzyme 2 , Betacoronavirus , COVID-19 , Humans , Receptors, Virus/chemistry , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL